

CTM8251T

集成 DC/DC 变换器的隔离型 CAN 收发器

产品特点

- ◆ 隔离型 CAN 收发器
- ◆ 完全兼容 ISO11898-24V 标准
- ◆ 高达 2500VDC 隔离电压
- ◆ 内置隔离电源功率达 1W
- ◆ 无需外接其他器件
- ◆ 数据速率高达 1Mbps
- ◆ 差动接收器具有极强的抗电磁干扰能力(EMI)
- ◆ 未上电节点不影响总线
- ◆ 24V 系统中防止电池对地短路
- ◆ 输入电平兼容 3.3V 与 5V 器件
- ◆ 输出过热保护
- ◆ 总线至少支持 110 个节点

产品应用

- ◆ CAN 数据总线
- ◆ 工业自动化系统
- ◆ 汽车电子
- ◆ 楼字智能化系统
- ◆ 通信基站控制
- ◆ 医疗设备

产品概述

CTM8251T是一种位于CAN协议控制器与物理总线之间的隔离式CAN收发器,适用于24V系统,满足ISO11898-24V标准。传输信号隔离采用新型高速数字电磁隔离器,具有较低的电磁辐射,最高数据传输速率达1Mbps。未上电节点不会影响总线,输出级具有防电池对地短路和过热保护功能。在CAN总线中采用CTM8251T,可以在CAN总线协议控制器与物理层总线之间建立完全隔离的接口,提高总线的可靠性。内部集成的隔离型DC/DC变换器,保证CTM8251T外部只需要5V单电源供电,就可实现CAN控制器与CAN总线之间的完全电气隔离,提高系统的抗共模干扰能力,最高隔离电压达2500VDC,外部无需其他元件,方便用户嵌入相关设备。模块的CAN总线输出端接有TVS管,提高模块抗总线过电压的能力。采用双列直插封装,具有体积小,集成度高的特点。

CTM8251T

集成 DC/DC 变换器的隔离型 CAN 收发器

最大允许值

参数	数值
电源电压	4.5V ~ 5.5V
CANL CANH	-36V ~ +36V
输入 TXD 直流电压	-0.3V~+5.5V
输出 RXD 直流电压	-0.3V~+5.5V
CANL CANH 瞬态电压	-200V~+200V
ESD 保护功能	人体模型:>±4kV, 机械模型: ±200V
CANL 和 CANH 之间脉冲峰值功率	200W
储藏温度	-55°C to +125°C
工作温度	-40°C to +85°C

电气参数

参数	符号	最小值	典型值	最大值	单位	条件
电源部分	电源部分					
电源电压	V _{CC}	4.5	5.0	5.5	V	
山 海山达	T	50	100	200	mA	显性状态
电源电流 	I _{CC}	25	30	35	mA	隐性状态
驱动器						
逻辑输入高电平	V _{IH}	2.4			V	
逻辑输入低电平	V _{IL}			0.8	V	
逻辑输入电流	I _{IH} , I _{IL}			500	μΑ	
隐性 CANH 电压	V _{CANH}	2.0	2.5	3.0	V	TXD=1
隐性 CANL 电压	V _{CANL}	2.0	2.5	3.0	V	TXD=1
隐性输出电流	I _{O(CANL,CANH)}	-2.0		2.5	mA	
显性 CANH 电压	V _{CANH}	3.0	3.6	4.25	V	TXD=0
显性 CANL 电压	V _{CANL}	0.5	1.4	1.75	V	TXD=0
隐性差分输出电压	V _{OD}	-50	0	+50	mV	TXD=1
显性差分输出电压	V _{OD}	1.5	2.25	3.0	V	TXD=0
输出短路电流	I _{SC(CANL,CANH)}	45	70	100	mA	TXD=0
开启延迟	t _{on(TXD)}	50		150	ns	
关闭延迟	t _{off(TXD)}	50		150	ns	
接收器						
差分输入门限	V _{ith}	0.5	0.7	0.9	V	
隐性差分输入电压	V _{IDR}	0		0.5	V	
显性差分输入电压	V _{IDD}	0.9		5.0	V	
共模输入阻抗	R _{ICM(CANL,CANH)}	15	25	35	kΩ	
输入电容	C _{I (CANL,CANH)}		30	50	pF	
输入漏电流	I _{LI}	100	200	250	μΑ	
逻辑输出低电平	V _{OL}		0.2	0.4	V	I _O =4mA

CTM8251T

集成 DC/DC 变换器的隔离型 CAN 收发器

逻辑输出高电平	V_{OH}	V _{CC} -0.5	4.8		V	I _O =4mA
隐性转显性延迟	t _{on(RXD)}	50		150	ns	
显性转隐性延迟	t _{off(RXD)}	50		150	ns	

无特别说明,典型值为 25℃

隔离特性

参数	符号	最小值	典型值	最大值	单位	条件
隔离电压			2500		Vrms	
隔离电容			40		pF	

温度特性

参数	最小值	典型值	最大值	单位
工作温度	-40		+85	$^{\circ}$ C
储藏温度	-40		+125	$^{\circ}$ C

接收器真值表

V _{ID} =V _{CANH} -V _{CANL}	总线状态	RXD
$V_{ID} \geqslant 0.9V$	显性	低电平
$V_{ID} \leq 0.5V$	隐性	高电平
0.5V <v<sub>ID<0.9V</v<sub>	不定	不定

发送器真值表

TXD	总线状态	CANH	CANL
低电平	显性	高电平	低电平
高电平	隐性	高阻	高阻
悬空	隐性	高阻	高阻

集成 DC/DC 变换器的隔离型 CAN 收发器

典型应用

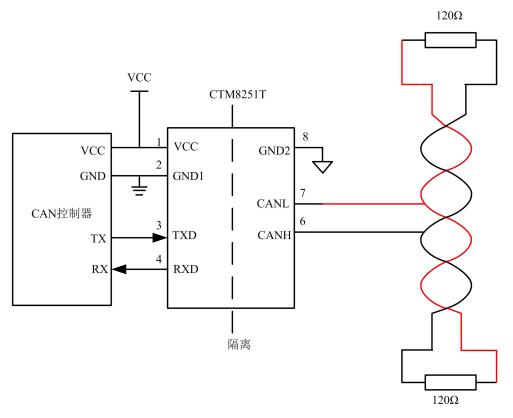
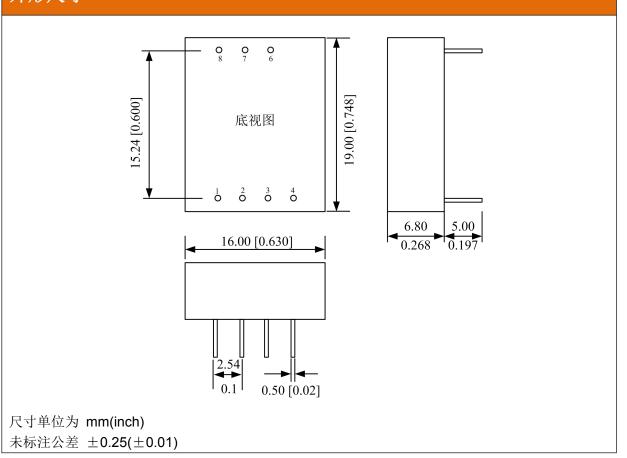



图 1 CTM8251T 典型应用电路图

集成 DC/DC 变换器的隔离型 CAN 收发器

引脚功能				
引脚号	引脚名称	描述		
1	VCC	电源输入		
2	GND1	地 (逻辑侧)		
3	TXD	驱动器输入数据端		
4	RXD	接收器输出数据端		
5	NC	空		
6	CANH	CAN电压输入/输出高电平		
7	CANL	CAN电压输入/输出低电平		
8	GND2	地(总线侧)		

外形尺寸

